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relationship between the normal-tridecamer and the relaxed 
fragment could be found. 

The marked difference between the conformations of the 
relaxed and the unrelaxed crystal fragments are probably 
entirely due to the small size of the fragments. Although it 
cannot easily be verified by calculation (in view of the large 
number of molecules involved), we anticipate that these 
differences will decrease, and eventually vanish, when more 
shells are added (a crystal may be considered as a central 
molecule with a large number of shells). These differences 
should be sufficiently small to render the comparison (i) 
feasible. Even so, the comparison (ii), although leading to the 
same result, has the advantage that the comparison of cluster 
conformations can be replaced by a comparison of energies, 
since a cluster that is similar to the unrelaxed fragment is 
identical to the relaxed fragment, with the same energy. 

concerning its significance in connection with crystallite 
formation. Williams's assumption that the normal cluster 
could lead to crystallite formation, whereas the iso-cluster 
could be broken up by thermal agitation, is based on the 
observation that the central molecule has a lower energy in 
the normal-tridecamer than in the iso-tridecamer. The 
difference is very small (ca 1%) and could easily change sign 
when more molecules are added. No conclusions can be 
drawn from the view that the energy of the central molecule 
should increase in a uniform manner, when molecules are 
added to the cluster: the figure - 2 . 0  (Williams, 1980, Table 
2) does not fit significantly better in the pattern of energy 
increments than would the figure -1 .7 .  

We conclude that it is necessary to add more molecules to 
the clusters in order to be able to relate their conformations 
to the observed crystal structure and to establish their 
significance in relation to crystallization. 

C o n c l u s i o n  

The considerable change in conformation of the 13-molecule 
crystal fragment upon relaxation supports the view that a 
13-molecule cluster is too small to justify assumptions 
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Abstract  

Expressions are derived for estimating the standard 
deviations of Cremer-Pople ring-puckering coordinates, with 
the assumption that the e.s.d.'s of the atomic positions are 
approximately isotropic. 

The puckering of an N-membered monocyclic ring may be 
described by the amplitude and phase coordinates intro- 
duced by Cremer & Pople (1975). Expressions for cal- 
culating the e.s.d.'s of puckering coordinates, assuming 
independent atomic positions with nonisotropic e.s.d.'s, 
become rather complicated (Taylor, 1980). As shown in the 
present paper, considerably simpler expressions for cal- 
culating these e.s.d.'s are obtained if isotropie e.s.d.'s of 
independent positions can be assumed, viz aj ... [(a~ + o'~j + 
o~)/3]v2A for j = 1, 2 . . . . .  N. Such an assumption is 
frequently a good approximation, when deriving the struc- 
tural parameters from three-dimensional single-crystal dif- 
fraction data. 

Cremer & Pople define the ring-puckering coordinates 
qm > 0 and < (p,,, < 2zc by 

c,, -- q,, cos ~0,. = (Z/N) v2 Y Zj cos [2ztm(j - 1)/N] 
(1) 

s,, = q~ sin q~,n = --(Z/N) v2 Z Zj sin [2zrm(j -- 1)/NI 
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for m = 2,3 . . . . .  ( N -  1)/2, and an additional coordinate 

qlv/2 = N-I/2 Z (--1) J - '  Zj (2) 

if N is even. The sums are all over j = 1, 2 . . . . .  N. The Z i 
values occurring in (1) and (2) denote the perpendicular 
displacement of the j th atom from a uniquely defined mean 
plane (el Cremer & Pople, 1975) passing through the 
geometrical center of the ring. Since this center has an e.s.d. 
a 0 = (1/N)(~ O"3)1/2 and as the coordinate transformation 
involved to obtain the Z i values is unitary, the e.s.d.'s of the 
Zj values can be approximated by aj ~_ [(a~) 2 + a02] 1/2. By 

deriving the e.s.d.'s of c m and s m as a2(c,,) = Y (a i x 
Oc,,/OZj) 2 and a2(Sm) = Z (aj x ~s,,/OZi)2, we obtain from 
(1) 

a2(c~) = (2/N) Z {a i cos [2nm(j--  I)/N] }2 

a2(s,n) = (Z/N) Z {oj sin [2zcm(j-- 1)/NI }2 (3) 

= [(Z/N) Z e~] -- tr2(cm). 

2 z and tan qTra = Sm/C,, we obtain in a similar From qL = Cm +sm 
way 

O'2(qm) ~--- 0"2(Cm) COS2 (0m + O'2(Sm) sin2 ~0m (4) 

a2(~o m) = [aZ(cm) sin 2 ~0,, + tr2(sm) cos 2 (om]/q 2. 

For the additional coordinate qN/2 (N even), we obtain 

e2(qm2) = ( l /N)  Z o']. (5) 
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Thus, o'(qN/2) is simply the root-mean-square (r.m.s.) value of 
the positional e.s.d.'s. 

If the positional e.s.d.'s are roughly the same, we can as a 
further approximation assume that all aj can be replaced by a 
= [(I/N) }-7 0'3] 1/2, i.e. replaced by the r.m.s, value a. Since 
Z cos 2 [2wn(j - I)/N] = Y sin 2 [2ztm(j - 1)/N] = N/2, it 
follows from (3)-(5) that for this case 

O(Cm) = a ( S m )  : cr(qm) = o(qNa) = a (6) 

and a(¢m) = a/qm. 
For the spherical polar set (Q,O,q~) introduced by Cremer 

& Pople (1975) to describe the puckering of six-membered 
2 i/2 rings [viz Q = (q2 + q3) , 0 = arctan (q2/q3) and ¢ = ~02], 

the expressions for the e.s.d.'s of Q and 0 are (el Taylor, 
1980) analogous to those for a(qm) and a(~om). Thus, 

o-2(Q) : aZ(q3) COS 2 0 -I- 0"2(q2) sin20 

0'2(0) : [O'2(q3) sin 2 0 + 0"2(q2) cos 2 0 ] / Q  2. 
(7) 

For the case when all oj can be replaced by their r.m.s. 
value, a, the e.s.d.'s of Q and 0 become 

a(Q) = a and a(O) = a/Q. (8) 

Taylor (1980) has given two examples of calculations of 
puckering-parameter e.s.d.'s, with his expressions for non- 
isotropic e.s.d.'s of independent atomic positions. For the 

pyranose rings observed in the crystal structures of fl- 
DL-arabinopyranose (Takagi, Nordenson & Jeffrey, 1979) 
and fl-L-arabinopyranose (Takagi & Jeffrey, 1977) he 
obtained for the spherical polar set Q,O,q~: 0.584 (1)A, 
2.1(1) °, 140(3) ° and 0 .573(2)A,  1.5(2) ° , 116(7) ° , 
respectively. Calculating the e.s.d.'s from individual iso- 
tropic positional e.s.d.'s, as suggested in the present paper 
[formulas (3)-(5) and (7)], yields the same rounded-off 
e.s.d.'s (viz 0.00098 A, 0.096 °, 2.7 ° and 0.0018 A, 0.18 °, 
6.7 °, respectively). These e.s.d, values are furthermore 
obtained even if the individual positional e.s.d.'s are replaced 
by their r.m.s, value, a [formulas (6) and (8)]. The two 
examples thus illustrate the validity of the different approxi- 
mations utilized in the present study. 
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Abstract 

Maxima and minima are tabulated for the Bessel functions 
J , ( x )  for values of n from 0 to 30 [i.e. zeros of J~(x)]. The 
first six points are recorded for each function. The table 
considerably extends the range of earlier tables available in 
the literature. It should have applications in the inter- 
pretation of diffraction patterns from helical or wave-form 
structures or features, and has been used in connection with 
some electron microscope images. 

Bessel functions of the first kind of order n, where n is a 
positive integer, have come into the calculations and 
interpretation of diffraction patterns from helical (or wave- 
form) structures. Particular applications include the interpre- 
tation of X-ray diffraction patterns from large biological 
molecules based upon helices (Cochran, Crick & Vand, 
1952; Klug, Crick & Wyckoff, 1958; Sherwood, 1976). The 
same principles have been successfully applied to the 
interpretation of electron microscope~ images of such 
molecules and their associated growth forms in biological or 
bio-medical sections (Misell, 1978). More recently, images of 
metal structures containing dislocations or other features 
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have been interpreted in the same way (Andrews & Keown, 
1981). 

Standard tables are available in two volumes of functions 
(Abramowitz & Stegun, 1965; Jahnke & Emde, 1945). 
Generally, numerical values of the Bessel functions are given 
and their zeros. Maxima and minima are also provided in 
Table 9.5 of Cochran, Crick & Vand (1952)for values o fn  
up to and including 8. Table 1 may be regarded as an 
extension of this table and also one provided by Spiegel 
(1974). A formula given by Gray & Matthews (1922) and 
Gray & Macrobert (1966) does not appear to be entirely 
reliable and the calculations have been based upon a 
computer program used in the Medical Research Council 
Laboratory of Molecular Biology (Cambridge). 

For some practical purposes values to one or two decimal 
places are sufficiently accurate. Graphical interpolation is 
also accurate for some applications, and reference may also 
be made to the recurrence relation 

J'(z)  = J,,_, (z) - J,,+, (z) 

so that the maxima and minima are at values of (z) where 
3"._~ and J,,+~ intersect. Evidently the present tabulation is 
more accurate and should be available as an addition to the 
tables for these functions and for use when required by 
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